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e Community Climate System Model (CCSM v3)
* 3 x 102 calculations for single earth day simulation.

* National Center for Atmospheric Research supercomputer cluster
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Complex System

Ocean * Nonlinear
* Feedback

Logistic Map  znyi1 = rza (1 — z,)

Exchange of E . .
iRl nonlinear, no feedback, chaotic

Land y Atmosphere
Material

* Interdependent sub-components or sub-systems

Information

e Micro and macro-states
* Spontaneous ordering
Sea Ice

* Emergence

* Memory

“Complexity starts when causality breaks down”*

* Ladyman, J.; Lambert, J.; Wiesner, K. What Is a Complex System? Eur. J. Philos. Sci. 2013, 3, 33-67
e Schmidt, G. A. The Physics of Climate Modeling. Phys. Today 2007, 60, 72-73.



Model Parameters / Variables

Atmospheric Temperature
Precipitation
Pressure

Wind velocity
Humidity

Vertical Profiles
Ocean Temperature
Ocean Salinity
Ocean Circulation
Sea Ice Distribution
Vegetation



FAQ 8.1, Figure 1. Global mean
near-surface temperatures over the 20th
century from observations (black) and as
obtained from 58 simulations produced
by 14 different climate models driven by
both natural and human-caused factors
that influence climate (yellow). The
mean of all these runs is also shown
(thick red line). Temperature anomalies
are shown relative to the 1901 to 1950
mean. Vertical grey lines indicate the
timing of major volcanic eruptions.
(Figure adapted from Chapter 9, Figure
9.5. Refer to corresponding caption for
further details.)
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* Randall, D.A.,R.A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, V. Kattsov, A. Pitman, J. Shukla, J.
Srinivasan, R.J. Stouffer, A. Sumi and K.E. Taylor, 2007: Cilmate Models and Their Evaluation. In: Climate
Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report

of the Intergovernmental Panel on Climate

Naveen Shamsudhin - snaveen@ethz.ch
10 May 2016 Multi-Scale Robotics Lab /



R 4
;{\
(]

OPTICAL DEPTH
S o o
o & 2 &

1988 1989 1990 1991 1992 1993 1994 1995
YEAR

o
o
T

— e —

=
(SIS

The 1991 eruption of Mount Pinatubo in the Philippines (above) pro-
duced sulfate aerosols that affected climate for years and offered climate
modelers an unprecedented opportunity to compare models with obser-
vations. The upper graph shows the atmospheric concentration of
aerosols as measured by the opfical depth, an indication of the atmos-
phere’s ability to block radiation transmission (in this case, at 500 nm).
The black solid curve gives the global mean; broken curves describe the

ve) hemispheres. The lower graph gives
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globcl mean surface temperature. The green and purple curves were
generated from two somewhat different observational data sefs. The red curve gives the average of five runs simulated by the

GISS ModelE GCM. Circles indicate June-August; asterisks, December—February. (Photograph by Dave Harlow, courtesy of the
US Geological Survey; graphs adapted from J. Hansen et al., http://arxiv.org/abs/physics/0610109.)

* Schmidt, G. A. The Physics of Climate Modeling. Phys. Today 2007, 60, 72-73.
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Goals of Climate Modeling

* Better representations of physical processes (“simulations-for-
understanding”)

* Better representations of the future climate (“simulations-for-
decision-support™)

Thompson, Erica and Smith, Leonard A. (2014) The hawkmoth effect. In: LSE Research Festival 2014, 8
May 2014, The London School of Economics, London, UK. (Unpublished)
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e 1987 — Human population reaches 5 billion
* 1988 — Intergovernmental Panel on Climate Change (IPCC) formed

* 1990 — IPCC ARI1 - Temperature rises 0.3 — 0.6 degrees in last hundred years. Human emissions in
addition to natural causes global warming.

e 1995 —IPCC AR2 - “discernable human influence” on Earth’s climate

e 1997 — Kyoto Protocol — Developed nations to reduce emissions by 5% by 2008-2012

e 1999 — Human population reaches 6 billion

¢ 2001 —IPCC AR3 - “new and stronger evidence” — Human greenhouse emissions main contributor
2007 —IPCC AR4 — > 90% likely that modern day climate change results from human intervention
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Slingo, J.; Palmer, T. Uncertainty in Weather and Climate Prediction. Philos. Trans. R. Soc. A Math. Phys. Eng.
Sci. 2011, 369, 4751-4767. _
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Sources of Uncertainty

1. Initial Conditions
2. Boundary Conditions
3. Parameter Uncertainty X, ,, = ax,f + bxn
Numerical Uncertainty (grid resolution, truncation, Numerical method)

1. Model or Structural Uncertainty

. 2.5 _ (2.5+sin(x,,)) :
X, =ax,~+bx orx ,h6 =ax, +bx +csin(x,)
Climate Prediction:
Boundary conditions - 2 :-_‘>

Decades to centuries
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Parametric uncertainties

* Particle Physics Ensemble y N W
(PPE) methods X X3 %

— Parameter variation to explore the \ ‘ f-/
parameter space 4

— Multi-parameter perturbations Model

— Simple but exhaustive f(-\' )

— Successfully employed in a N
variety of climate models and V1 / \ Vs
scenarios ‘ ‘ ’ EN ‘

5.26 +0.04 ! Reliability =87 6%
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Multi-model ensembles

time

Set of model simulations using
structurally different models. S

“increases skill, reliability and
consistency of model forecasts”
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Equilibrium climate sensitivity is defined as the global mean
temperature response of an atmospheric climate model run with a
simple (slab) ocean to a doubling of CO,. It is now believed that the
most likely value for climate sensitivity is around 3.0°C.
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Inter-comparison of Models

* Weighted averaging or Bayesian methods

— Model performance in replicating current climate and inter-model
agreement in projections of future change 1s used.

— Reliability Ensemble Average (REA):
m ny [1/(mXn)]
Ri _ (R 2_m>< R 2jn [1/(mXn)] _ {[ €T ] X[ €T ] }
[.‘ B, ) ( D, ) ] |BT’2'| |DT’2‘,|
AT — > i RAT;
2.i R

Mode
; Median

Mean

f

Median over mean for populations
with outliers

QOutliers
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Inter-comparison of Models
IPCC uses multi-model projections for long-term climate

change with unweighted multi-model means.

IPCC AR3 (2001) — two models discarded because of extreme
estimates of warming!

Quantifying distance in ‘model space’ is formally difficult
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Model Comparison

* Predicted temperature rise in winter in 2100
* WNA (Western North America) region estimates

* SRES AI1B scenario (Balance of fossil intensive and fossil-free
energy sources)
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Challenges 1n using Model-model Ensembles

(a) Metrics, skill and lack of verification

Emission scenario as a boundary condition — uncertainty

“simulating the past, and present correctly does not guarantee
that the models will be correct in the future”

Is a model that performed extremely well in every past/present
scenario case, more likely to be correct in the future?

“The crux lies in defining a metric for model performance
which might be relevant for predicting future climate, but must
be based on observations from the past or present. There is no
unique way of doing that”



Challenges 1n using Model-model Ensembles

* “The choice of a metric to weight model for future projections
is therefore pragmatic, subjective and often also influenced by
what can be observed with sufficient accuracy.”

* Choice of (multi-)metrics and ranking of model performance
— Atmospheric temperature, precipitation, pressure, ocean temperature, etc

— Models evaluation for both the mean and the trends over a time period.



Challenges 1n using Model-model Ensembles

(b) Model dependence and mean bias

Question of model independency and improved performance by
averaging.
“There might also be ‘unknown unknowns’, i.e. misrepresentations of

processes, missing processes or uncertainties in processes that we are
not aware of.”

“The current generation of models cannot be considered to be fully
independent, nor are the models distributed around the true
representation of the climate system. Therefore, in the absence of new
knowledge about the processes and a substantial increase in
computational resources to correctly resolve or parametrize them, our
confidence in models should not increase unboundedly, and thus our
uncertainty should not continue to decrease when the number of models
increases.”



Challenges 1n using Model-model Ensembles

(¢c) The ensemble of opportunity

* Human decisions — subjectivity and non-scientific aspects involved in
modeling — computational resources and funding

* Recent studies using simpler models have generated larger climate
sensitivities upto 6 degrees or more.



Challenges 1n using Model-model Ensembles

(d) Model Tuning and Evaluation
* Circular reasoning — using same datasets to tune and evaluate models.

o “Agreement with observations can be spurious, and can arise from a
cancelling of errors, not necessarily guaranteeing that processes are

correctly simulated.”

“It remains to be shown that an automating tuning approach can
produce model solutions substantially better than those produced by
experts making choices on the parameters based on their experience and
understanding of the processes.”

* Observation uncertainties — lack of data in certain spatio-temporal
segments and using models to observe’

* Missing sub-components of model. New models have larger sub-
components



Conclusions

Need for quantitative metrics for propagation into impact, mitigation and
management models.

Need for multi-performance metrics
Concerted international efforts on model development

“Given the often non-rational and unpredictable behaviour of humans, their
decisions and the difficulty in describing human behaviour and economics in
models, the perfect climate forecast (as opposed to a projection that is
conditional on the scenario) is a goal that will probably be impossible due to
the uncertainties in emission scenarios and the feedback loops involving the
agents that the forecast is directed towards. Nonetheless, a comprehensive
picture of the uncertainty in climate projections remain a key goal to aim for,
and we should welcome the opportunity of taking advantage of independent
resources and minds at work on it, by intelligently combining their — always
different to some degree — results.”



Future Directions

* Propagation into impact models
* Propagation into policy & decision making




