
10	
  May	
  2016	
   Naveen	
  Shamsudhin	
  -­‐	
  snaveen@ethz.ch	
  
Mul;-­‐Scale	
  Robo;cs	
  Lab	
   1	
  



Climate Models	



•  Atmosphere-Ocean 
Generation Circulation 
Models (AOGCMs)	



•  4 major subcomponents	


–  Ocean	


–  Atmosphere	


–  Sea Ice	


–  Land	
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•  Community Climate System Model (CCSM v3) 	


•  3 x 1012 calculations for single earth day simulation. 	


•  National Center for Atmospheric Research supercomputer cluster 	





Complex System	
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Complex System	
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•  Nonlinear	


•  Feedback	



	

Logistic Map	


	

 	

nonlinear, no feedback, chaotic	



•  Interdependent sub-components or sub-systems	


•  Micro and macro-states	


•  Spontaneous ordering	


•  Emergence	


•  Memory	


•  “Complexity starts when causality breaks down”*	
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Model Parameters / Variables	



•  Atmospheric Temperature	


•  Precipitation	


•  Pressure	


•  Wind velocity	


•  Humidity	


•  Vertical Profiles	


•  Ocean Temperature	


•  Ocean Salinity	


•  Ocean Circulation	


•  Sea Ice Distribution	


•  Vegetation	
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Goals of Climate Modeling	



•  Better representations of physical processes (“simulations-for-
understanding”)	



•  Better representations of the future climate (“simulations-for-
decision-support”)	
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•  1987 – Human population reaches 5 billion	


•  1988 – Intergovernmental Panel on Climate Change (IPCC) formed 	


•  1990 – IPCC AR1 – Temperature rises 0.3 – 0.6 degrees in last hundred years. Human emissions in 	



	

 	

 	

addition to natural causes global warming. 	


•  1995 – IPCC AR2 – “discernable human influence” on Earth’s climate	


•  1997 – Kyoto Protocol – Developed nations to reduce emissions by 5% by 2008-2012	


•  1999 – Human population reaches 6 billion	


•  2001 – IPCC AR3 – “new and stronger evidence” – Human greenhouse emissions main contributor	


•  2007 – IPCC AR4 – > 90% likely that modern day climate change results from human intervention	
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Sources of Uncertainty	


1.  Initial Conditions	


2.  Boundary Conditions	


3.  Parameter Uncertainty	



	

 Numerical Uncertainty (grid resolution, truncation, Numerical method)	


1.  Model or Structural Uncertainty	
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xn+1 = axn
3 + bxn

xn+1 = axn
2.5 + bxn  or xn+1 = axn

(2.5+sin(xn )) + bxn + csin(xn )



Parametric uncertainties	



•  Particle Physics Ensemble 
(PPE) methods	


–  Parameter variation to explore the 

parameter space	


–  Multi-parameter perturbations	


–  Simple but exhaustive	


–  Successfully employed in a 

variety of climate models and 
scenarios	
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Multi-model ensembles	
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•  Set of model simulations using 
structurally different models.	



•  “increases skill, reliability and 
consistency of model forecasts”	



•  Diagnosis, validation and 
intercomparison of results/
predictions from different models	


Equilibrium climate sensitivity is defined as the global mean 
temperature response of an atmospheric climate model run with a 
simple (slab) ocean to a doubling of CO2. It is now believed that the 
most likely value for climate sensitivity is around 3.0°C. 	





Inter-comparison of Models	
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•  Weighted averaging or Bayesian methods	


–  Model performance in replicating current climate and inter-model 

agreement in projections of future change is used. 	


–  Reliability Ensemble Average (REA):	



Median over mean for populations 
with outliers	





Inter-comparison of Models	
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•  IPCC uses multi-model projections for long-term climate 
change with unweighted multi-model means. 	



•  IPCC AR3 (2001) – two models discarded because of extreme 
estimates of warming!	



•  Quantifying distance in ‘model space’ is formally difficult	





IPCC World Regions	
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Model Comparison	
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•  Predicted temperature rise in winter in 2100	


•  WNA (Western North America) region estimates	


•  SRES A1B scenario (Balance of fossil intensive and fossil-free 

energy sources)	





Challenges in using Model-model Ensembles	
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(a) Metrics, skill and lack of verification	


•  Emission scenario as a boundary condition – uncertainty	


•  “simulating the past, and present correctly does not guarantee 

that the models will be correct in the future”	


•  Is a model that performed extremely well in every past/present 

scenario case, more likely to be correct in the future? 	


•  “The crux lies in defining a metric for model performance 

which might be relevant for predicting future climate, but must 
be based on observations from the past or present. There is no 
unique way of doing that”	





Challenges in using Model-model Ensembles	
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•  “The choice of a metric to weight model for future projections 
is therefore pragmatic, subjective and often also influenced by 
what can be observed with sufficient accuracy.”	



•  Choice of (multi-)metrics and ranking of model performance	


–  Atmospheric temperature, precipitation, pressure, ocean temperature, etc 	


–  Models evaluation for both the mean and the trends over a time period.	


 	





Challenges in using Model-model Ensembles	
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(b) Model dependence and mean bias	


•  Question of model independency and improved performance by 

averaging.	


•  “There might also be ‘unknown unknowns’, i.e. misrepresentations of 

processes, missing processes or uncertainties in processes that we are 
not aware of.”	



•  “The current generation of models cannot be considered to be fully 
independent, nor are the models distributed around the true 
representation of the climate system. Therefore, in the absence of new 
knowledge about the processes and a substantial increase in 
computational resources to correctly resolve or parametrize them, our 
confidence in models should not increase unboundedly, and thus our 
uncertainty should not continue to decrease when the number of models 
increases.”	





Challenges in using Model-model Ensembles	
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(c) The ensemble of opportunity	


•  Human decisions – subjectivity and non-scientific aspects involved in 

modeling – computational resources and funding	


•  Recent studies using simpler models have generated larger climate 

sensitivities upto 6 degrees or more.	





Challenges in using Model-model Ensembles	
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(d) Model Tuning and Evaluation	


•  Circular reasoning – using same datasets to tune and evaluate models. 	


•  “Agreement with observations can be spurious, and can arise from a 

cancelling of errors, not necessarily guaranteeing that processes are 
correctly simulated.” 	



•  “It remains to be shown that an automating tuning approach can 
produce model solutions substantially better than those produced by 
experts making choices on the parameters based on their experience and 
understanding of the processes.”	



•  Observation uncertainties – lack of data in certain spatio-temporal 
segments and using models to observe’	



•  Missing sub-components of model. New models have larger sub-
components	





Conclusions	



•  Need for quantitative metrics for propagation into impact, mitigation and 
management models. 	



•  Need for multi-performance metrics	


•  Concerted international efforts on model development	



•  “Given the often non-rational and unpredictable behaviour of humans, their 
decisions and the difficulty in describing human behaviour and economics in 
models, the perfect climate forecast (as opposed to a projection that is 
conditional on the scenario) is a goal that will probably be impossible due to 
the uncertainties in emission scenarios and the feedback loops involving the 
agents that the forecast is directed towards. Nonetheless, a comprehensive 
picture of the uncertainty in climate projections remain a key goal to aim for, 
and we should welcome the opportunity of taking advantage of independent 
resources and minds at work on it, by intelligently combining their – always 
different to some degree – results.”	
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Future Directions	


•  Propagation into impact models	


•  Propagation into policy & decision making	
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